Answer :

Sure, let's solve [tex]\( i^{99} \)[/tex].

To begin, recall that [tex]\( i \)[/tex] is the imaginary unit, defined as [tex]\( i = \sqrt{-1} \)[/tex]. The powers of [tex]\( i \)[/tex] follow a cyclical pattern:

[tex]\[ \begin{align*} i^1 &= i, \\ i^2 &= -1, \\ i^3 &= -i, \\ i^4 &= 1, \\ i^5 &= i, \\ &\vdots \\ i^6 &= -1, \\ &\vdots \end{align*} \][/tex]

This pattern repeats every four powers. Hence, any power of [tex]\( i \)[/tex] can be reduced by identifying its position within this cycle of four terms.

Let's determine the equivalent power of [tex]\( i \)[/tex] within the first four powers for [tex]\( i^{99} \)[/tex]:

[tex]\[ 99 \div 4 = 24 \quad \text{remainder} \quad 3 \][/tex]

The remainder when 99 is divided by 4 is 3. This signifies that:

[tex]\[ i^{99} = i^3 \][/tex]

From our earlier cycle:

[tex]\[ i^3 = -i \][/tex]

Therefore, [tex]\( i^{99} \)[/tex] simplifies to [tex]\(-i\)[/tex].

Thus, the result in this question is [tex]\( -i \)[/tex]. Since [tex]\(-i\)[/tex] is a purely imaginary number, the imaginary part of [tex]\(-i\)[/tex] is:

[tex]\[ -1.0 \][/tex]

So, the final result [tex]\( \boxed{-1.0} \)[/tex] is the correct solution for [tex]\( i^{99} \)[/tex].

Other Questions