A body rotates with uniform speed in a circle of radius [tex]r[/tex]. What are the magnitudes of its angular velocity [tex]w[/tex], linear velocity [tex]v[/tex], and acceleration [tex]a[/tex]?

[tex]\[
\begin{tabular}{|l|l|l|l|}
\hline
& Angular Velocity [tex]w[/tex] & Linear Velocity [tex]v[/tex] & Acceleration [tex]a[/tex] \\
\hline
A) & [tex]\frac{\pi}{T}[/tex] & [tex]\frac{4 \pi r}{T}[/tex] & [tex]\frac{2 \pi r}{T^2}[/tex] \\
\hline
B) & [tex]\frac{2 \pi}{2 T}[/tex] & [tex]\frac{2 \pi r}{2 T}[/tex] & [tex]\frac{\pi^2}{T^2}[/tex] \\
\hline
C) & [tex]\frac{2 \pi}{T}[/tex] & [tex]\frac{2 \pi r}{T}[/tex] & [tex]\frac{4 \pi^2}{T^2}[/tex] \\
\hline
D) & [tex]\frac{2 \pi}{T}[/tex] & [tex]\frac{4 \pi r}{T}[/tex] & [tex]\frac{4 \pi^2}{T^2}[/tex] \\
\hline
\end{tabular}
\][/tex]



Answer :

To solve this problem, we need to identify the correct values for the magnitude of angular velocity ([tex]\(\omega\)[/tex]), linear velocity ([tex]\(\gamma\)[/tex]), and acceleration ([tex]\(a\)[/tex]) for a body rotating with uniform speed in a circle of radius [tex]\(T\)[/tex].

### Definitions and Formulas

1. Angular Velocity ([tex]\(\omega\)[/tex]):
The angular velocity is the rate at which an object rotates around a circle. If the period (time for one complete revolution) is [tex]\(T\)[/tex], then
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]

2. Linear Velocity ([tex]\(\gamma\)[/tex]):
The linear velocity is the tangential speed of the object moving along the circle. It is related to angular velocity and radius [tex]\(r\)[/tex] by the formula:
[tex]\[ \gamma = r \cdot \omega = r \cdot \frac{2\pi}{T} \][/tex]

3. Centripetal Acceleration ([tex]\(a\)[/tex]):
The centripetal acceleration is given by:
[tex]\[ a = r \cdot \omega^2 = r \cdot \left(\frac{2\pi}{T}\right)^2 = r \cdot \frac{4\pi^2}{T^2} \][/tex]

Given that radius [tex]\(r = T\)[/tex] is assumed (as per the question's context), we can substitute [tex]\(r\)[/tex] with [tex]\(T\)[/tex] in the above formulas.

### Calculations

- Angular Velocity ([tex]\(\omega\)[/tex]):
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]

- Linear Velocity ([tex]\(\gamma\)[/tex]):
[tex]\[ \gamma = T \cdot \frac{2\pi}{T} = 2\pi \][/tex]

- Centripetal Acceleration ([tex]\(a\)[/tex]):
[tex]\[ a = T \cdot \left(\frac{2\pi}{T}\right)^2 = T \cdot \frac{4\pi^2}{T^2} = \frac{4\pi^2}{T} \][/tex]

### Evaluating the Choices

Now, let's evaluate the options given based on our computations:

[tex]\[ \begin{array}{|c|c|c|c|} \hline & \omega & \gamma & a \\ \hline A) & \frac{\pi}{T} & \frac{4\pi T}{T} & \frac{2\pi T}{T^2} \\ \hline B) & \frac{2\pi}{2T} & \frac{2\pi T}{2T} & \frac{\pi^2}{T^2} \\ \hline C) & \frac{2\pi}{T} & \frac{2\pi}{T} & \frac{4\pi^2}{T^2} \\ \hline D) & \frac{2\pi}{T} & \frac{4\pi}{T} & \frac{4\pi^2}{T^2} \\ \hline \end{array} \][/tex]

By comparing the calculations:

- Option C correctly matches with our calculations for [tex]\(\omega\)[/tex], [tex]\(\gamma\)[/tex], and [tex]\(a\)[/tex]:

- [tex]\(\omega = \frac{2\pi}{T}\)[/tex]
- [tex]\(\gamma = 2\pi\)[/tex]
- [tex]\(a = \frac{4\pi^2}{T^2}\)[/tex]

Hence, the correct answer is:

[tex]\[ \boxed{3} \][/tex]

Other Questions