(i) Simplify [tex]$\left(2 x^2 + \frac{4}{x}\right)^{12}$[/tex]. Leave your answer in the form [tex]$a(2)^b$[/tex], where [tex]$a$[/tex] and [tex]$b$[/tex] are real numbers.



Answer :

To solve the expression \(\left(2 x^2+\frac{4}{x}\right)^{12}\) in the form \(a(2)^b\), follow these steps:

1. Simplify the expression inside the parentheses:
[tex]\[ 2 x^2 + \frac{4}{x} \][/tex]
Notice that we can factor out a 2:
[tex]\[ 2 x^2 + \frac{4}{x} = 2 \left( x^2 + \frac{2}{x} \right) \][/tex]

2. Substitute this back into the original expression:
[tex]\[ \left(2 x^2 + \frac{4}{x}\right)^{12} = \left[ 2 \left( x^2 + \frac{2}{x} \right) \right]^{12} \][/tex]

3. Apply the exponent to both factors inside the parentheses:
Using the property of exponents \((ab)^n = a^n b^n\):
[tex]\[ \left[ 2 \left( x^2 + \frac{2}{x} \right) \right]^{12} = 2^{12} \left( x^2 + \frac{2}{x} \right)^{12} \][/tex]

4. Identify the constants and terms:
Here, \(2^{12}\) is a constant term, and \(\left( x^2 + \frac{2}{x} \right)^{12}\) is the remaining term.

5. Express the constant \(\mathbf{2^{12}}\) in its form:
The term \(2^{12}\) evaluates to:
[tex]\[ 2^{12} = 4096 \][/tex]

6. Combine all results into the desired form \(a (2)^b\):

Given that \(a = 1\), and \(b = 12\), the expression simplifies to:
[tex]\[ a (2)^b = 4096 \cdot \left( x^2 + \frac{2}{x} \right)^{12} \][/tex]

Thus, the final answer in the specified form is:
[tex]\[ a = 1, \quad b = 12, \quad\text{and the constant term } 2^{12} = 4096. \][/tex]

Therefore, \(\left(2 x^2 + \frac{4}{x}\right)^{12}\) can be expressed as:
[tex]\[ 1 \cdot (2)^{12} = 4096. \][/tex]

So, the simplified form of the given expression is [tex]\(4096 \left( x^2 + \frac{2}{x} \right)^{12}\)[/tex].

Other Questions