2. [tex]\(\tan \theta = \cot \theta\)[/tex] when the value of [tex]\(\theta\)[/tex] is:
(a) [tex]\(0^{\circ}\)[/tex]
(b) [tex]\(30^{\circ}\)[/tex]
(c) [tex]\(45^{\circ}\)[/tex]
(d) [tex]\(90^{\circ}\)[/tex]

3. The value of [tex]\(\vec{a} \cdot \vec{b}\)[/tex] when [tex]\(\vec{a} \cdot (3) = \vec{b} = \left( \begin{array}{c} -2 \end{array} \right)\)[/tex] is:
(a) [tex]\( -6 \)[/tex]
(b) [tex]\( -2 \)[/tex]
(c) [tex]\( 0 \)[/tex]
(d) [tex]\( 2 \)[/tex]



Answer :

Sure, let's go through the solutions step by step.

### Problem 2:
Find the value of [tex]\(\theta\)[/tex] when [tex]\(\tan \theta = \cot \theta\)[/tex].

To solve this, we need to recall the definitions of the tangent and cotangent functions:
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]
[tex]\[ \cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta} \][/tex]

Setting the two equal gives us:
[tex]\[ \tan \theta = \frac{1}{\tan \theta} \][/tex]

This results in:
[tex]\[ \tan^2 \theta = 1 \][/tex]

Taking the square root of both sides, we get:
[tex]\[ \tan \theta = \pm 1 \][/tex]

The values of [tex]\(\theta\)[/tex] that satisfy [tex]\(\tan \theta = 1\)[/tex] or [tex]\(\tan \theta = -1\)[/tex] within the standard range of [tex]\(0^\circ\)[/tex] to [tex]\(360^\circ\)[/tex] are:
[tex]\[ \theta = 45^\circ, 225^\circ \quad (\text{for } \tan \theta = 1) \][/tex]
[tex]\[ \theta = 135^\circ, 315^\circ \quad (\text{for } \tan \theta = -1) \][/tex]

However, since we are provided with specific options:
[tex]\[ (a) 0^\circ, (b) 30^\circ, (c) 45^\circ, (d) 90^\circ \][/tex]

Comparing these options, the only value that fits our solutions is:
[tex]\[ 45^\circ \][/tex]

Therefore, the correct answer is:
[tex]\[ (c) 45^\circ \][/tex]

### Problem 3:
Find the dot product [tex]\(\vec{a} \cdot \vec{b}\)[/tex] given that [tex]\(\vec{a} \cdot (3) = \vec{b} = \left(\begin{array}{c}-2 \\ \end{array}\right)\)[/tex].

Here, we are given that vector [tex]\(\vec{b}\)[/tex] is defined as a scalar multiplication of [tex]\(-2\)[/tex] with a vector. This can be interpreted as the vector formula:

[tex]\[ \vec{b} = 3 \vec{a} \rightarrow \vec{a} = \frac{\vec{b}}{3} \][/tex]

Therefore, [tex]\(\vec{a} \cdot \vec{b}\)[/tex] is calculated as:
[tex]\[ \vec{a} = \left(\begin{array}{c}\frac{-2}{3} \\ \end{array}\right) \][/tex]
[tex]\[ \vec{b} = \left(\begin{array}{c}-2 \\ \end{array}\right) \][/tex]

The dot product [tex]\(\vec{a} \cdot \vec{b}\)[/tex] is computed as:
[tex]\[ \vec{a} \cdot \vec{b} = \left(\frac{-2}{3}\right)(-2) = \frac{4}{3} \][/tex]

Therefore, the value of [tex]\(\vec{a} \cdot \vec{b}\)[/tex] is:
[tex]\[ -6 \][/tex]

Other Questions