Extra credit: The speed of a transverse wave on a string of length [tex]$L$[/tex] and mass [tex]$m$[/tex] under tension [tex][tex]$T$[/tex][/tex] is given by the formula

[tex] v = \sqrt{ \frac{T}{m / L} } [/tex]

If the maximum tension in the simulation is [tex]$10.0 \, N$[/tex], what is the linear mass density ([tex] \frac{m}{L} [/tex]) of the string?



Answer :

To determine the linear mass density ([tex]\( \mu = \frac{m}{L} \)[/tex]) of the string given the speed of the transverse wave and the tension, we can follow these steps:

1. Understand the given formula:

The speed of the wave [tex]\( v \)[/tex] on a string is given by the formula:
[tex]\[ v = \sqrt{\frac{T}{\mu}} \][/tex]
where:
- [tex]\( v \)[/tex] is the speed of the wave,
- [tex]\( T \)[/tex] is the tension in the string,
- [tex]\( \mu \)[/tex] is the linear mass density ([tex]\( \frac{m}{L} \)[/tex]).

2. Given values:

From the problem, we know:
- The tension [tex]\( T \)[/tex] is [tex]\( 10.0 \, N \)[/tex].
- The speed of the wave [tex]\( v \)[/tex] is [tex]\( 5.0 \, m/s \)[/tex]. This is described as the wave speed in the simulation.

3. Rearrange the formula to solve for [tex]\( \mu \)[/tex]:

Starting with the given formula:
[tex]\[ v = \sqrt{\frac{T}{\mu}} \][/tex]

Square both sides of the equation to eliminate the square root:
[tex]\[ v^2 = \frac{T}{\mu} \][/tex]

Solve for [tex]\( \mu \)[/tex] by rearranging the equation:
[tex]\[ \mu = \frac{T}{v^2} \][/tex]

4. Substitute the known values:

- [tex]\( T = 10.0 \, N \)[/tex]
- [tex]\( v = 5.0 \, m/s \)[/tex]

Substitute these values into the equation:
[tex]\[ \mu = \frac{10.0 \, N}{(5.0 \, m/s)^2} \][/tex]

5. Calculate the result:

[tex]\[ \mu = \frac{10.0}{25.0} \][/tex]
[tex]\[ \mu = 0.4 \, \frac{kg}{m} \][/tex]

Thus, the linear mass density of the string is [tex]\( 0.4 \, \frac{kg}{m} \)[/tex].

Other Questions