The population [tex]\( P \)[/tex], in thousands, of a resort community is given by [tex]\( P(t) = \frac{400t}{3t^2 + 5}, t \geq 0 \)[/tex], where [tex]\( t \)[/tex] is time in months.

a) Find the population at [tex]\( t = 0, 1, 3, \)[/tex] and [tex]\( 8 \)[/tex] months.
- At [tex]\( t = 0 \)[/tex], the population is [tex]\( \square \)[/tex].
- At [tex]\( t = 1 \)[/tex], the population is [tex]\( \square \)[/tex].
- At [tex]\( t = 3 \)[/tex], the population is [tex]\( \square \)[/tex].
- At [tex]\( t = 8 \)[/tex], the population is [tex]\( \square \)[/tex].

(Simplify your answers. Round to the nearest integer as needed.)

b) Find the horizontal asymptote of the graph and determine the value that [tex]\( P(t) \)[/tex] approaches as [tex]\( t \)[/tex] goes to [tex]\( \infty \)[/tex].

c) Explain the meaning of the answer to part (b) in terms of the application.



Answer :

Let's break down the problem step by step:

### Part (a): Population at Specific Times
We are given the population function:
[tex]\[ P(t) = \frac{400t}{3t^2 + 5} \][/tex]

Step 1: Find [tex]\( P(0) \)[/tex]
[tex]\[ P(0) = \frac{400 \times 0}{3 \times 0^2 + 5} = \frac{0}{5} = 0 \][/tex]

At [tex]\( t = 0 \)[/tex], the population is [tex]\( 0 \)[/tex] thousand.

Step 2: Find [tex]\( P(1) \)[/tex]
[tex]\[ P(1) = \frac{400 \times 1}{3 \times 1^2 + 5} = \frac{400}{3 + 5} = \frac{400}{8} = 50 \][/tex]

At [tex]\( t = 1 \)[/tex], the population is [tex]\( 50 \)[/tex] thousand.

Step 3: Find [tex]\( P(3) \)[/tex]
[tex]\[ P(3) = \frac{400 \times 3}{3 \times 3^2 + 5} = \frac{1200}{3 \times 9 + 5} = \frac{1200}{27 + 5} = \frac{1200}{32} = 37.5 \][/tex]

At [tex]\( t = 3 \)[/tex], the population is [tex]\( 37.5 \)[/tex] thousand.

Step 4: Find [tex]\( P(8) \)[/tex]
[tex]\[ P(8) = \frac{400 \times 8}{3 \times 8^2 + 5} = \frac{3200}{3 \times 64 + 5} = \frac{3200}{192 + 5} = \frac{3200}{197} \approx 16.24 \][/tex]

At [tex]\( t = 8 \)[/tex], the population is approximately [tex]\( 16 \)[/tex] thousand (rounded to the nearest integer).

### Part (b): Horizontal Asymptote
To find the horizontal asymptote of [tex]\( P(t) \)[/tex], we need to determine the behavior of [tex]\( P(t) \)[/tex] as [tex]\( t \)[/tex] approaches infinity.
[tex]\[ P(t) = \frac{400t}{3t^2 + 5} \][/tex]

As [tex]\( t \to \infty \)[/tex], the term [tex]\( 3t^2 \)[/tex] dominates over 5 in the denominator.
[tex]\[ \lim_{t \to \infty} \frac{400t}{3t^2 + 5} = \lim_{t \to \infty} \frac{400t}{3t^2} = \lim_{t \to \infty} \frac{400}{3t} = 0 \][/tex]

Therefore, the horizontal asymptote is:
[tex]\[ y = 0 \][/tex]

As [tex]\( t \to \infty \)[/tex], [tex]\( P(t) \)[/tex] approaches [tex]\( 0 \)[/tex].

### Part (c): Interpretation of the Horizontal Asymptote
The horizontal asymptote [tex]\( y = 0 \)[/tex] indicates that as time progresses indefinitely (as [tex]\( t \to \infty \)[/tex]), the population of the resort community will approach [tex]\( 0 \)[/tex] thousand. This suggests that the population cannot sustain itself in the long term under the given conditions, and it will gradually decrease to zero over time.

### Summary of Answers:
(a) At:
- [tex]\( t = 0 \)[/tex] months, the population is [tex]\( \boxed{0} \)[/tex] thousand.
- [tex]\( t = 1 \)[/tex] month, the population is [tex]\( \boxed{50} \)[/tex] thousand.
- [tex]\( t = 3 \)[/tex] months, the population is [tex]\( \boxed{37.5} \)[/tex] thousand.
- [tex]\( t = 8 \)[/tex] months, the population is approximately [tex]\( \boxed{16} \)[/tex] thousand.

(b) The horizontal asymptote of the graph is [tex]\( \boxed{0} \)[/tex], and [tex]\( P(t) \)[/tex] approaches [tex]\( \boxed{0} \)[/tex] as [tex]\( t \to \infty \)[/tex].

(c) The horizontal asymptote signifies that in the long term, the population will approach zero, indicating that the community will not be sustainable over an extended period and will eventually diminish.

Other Questions